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Abstract

This presentation outlines recent work implementing and
calibrating actuated traffic controls and vehicle detectors in
TRANSIMS.  We have developed a generic control that provides
a flexible approach to representing such devices.  Although not
modeled upon specific existing hardware or algorithms, our
implementation provides a responsive control over a wide
variety of demand conditions.
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Outline

■ motivation
■ approach
■ implementation

• network representation
• signal properties
• detector properties

■ calibration
■ applications
■ prospects
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Motivation

■ It is difficult and expensive to gather information about existing
signal and detector configurations.
• For example, the Portland, Oregon region has several thousand

signals spread over a dozen jurisdictions: different controllers
are used, data formats vary, and some data does not exist in
digital format.

■ It is hard to forecast signalization for future-year planning
studies.

■ Many different types of signal controllers exist.
■ ITS-based controllers will have capabilities beyond current

technology.
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Approach

■ Focus on the properties of
generic, flexible, all-purpose
controllers and detectors.

■ Avoid implementing numerous,
specific, existing and future
signal controllers/detectors.
• This can be done when the

need arises, however.

■ Explore the controller- and
detector-parameter space for
information on performance of
actual and future systems.

■ GOAL: Build a controller that
works well where data on
actual controls cannot be
easily obtained.

TRANSIMS Algorithm

control parameters

system
 response

Model 170

W4IKS
W9FT

NEMA

Future ITS #1

Future ITS #2

Default
TRANSIMS
Controller



TRANSIMS Page 6 of 23

Implementation

■ TRANSIMS already models . . .
• unsignalized intersections
• pre-timed controls
• phase relationships
• uncoordinated signals
• coordination of signals

■ Current work focuses on . . .
• actuated signals
• generic control algorithm
• detectors

■ Future work will involve . . .
• more complex ring structures
• algorithms for specific controllers
• wide-area control
• ITS technologies
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Framework
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Signal Description

■ Turning movements at intersections are associated with each
phase:
• protected
• unprotected
• protected after stop

■ One or more detectors are
associated with each movement.

■ Timing plans specify the lengths
of phases:
• initial green and extension
• yellow
• red clear

■ Phase progression may be constrained.
■ Signals have single or dual rings.
■ Each control algorithm has a specific set of parameters.
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Detector Description

■ Detectors record the presence or passage of vehicles.
■ Detectors lie on a rectangle of roadway that

may span multiple lanes.
■ Detector efficiency and accuracy are specified

parametrically:
• An offset and noise may be applied

to measurements of position,
velocity, and acceleration.

• A detector may . . .
– miss a vehicle
– count a vehicle twice
– report a vehicle where none exists

• A detector may fail altogether.
• A failed detector may be repaired.

■ Detectors need not sample the roadway every second—other
sampling rates may be used.
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Detector Response

■ Detectors provide a (possibly noisy) time series of vehicle
detections:
• position
• velocity
• acceleration

■ Specific algorithms interpret this time series.
■ The first algorithm implemented estimates

• density
• flow
• speed
within the detection region.
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■ Consider each phase:
■ Several through or turning vehicle movements may be possible

during this phase:
■ One or more detectors measure demand for each

movement:
■ Use the vehicle density and flow estimates from the

detectors:        and       .
■ The probability of selecting phase p as the next phase is related

to the demand for the movements in the phase:

where   ,     , and     are parameters.
■ A newly-chosen phase persists for its initial green time;

a reselected phase persists for its green extension time.
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Choosing the Control Parameters
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■ Three parameters for controller:
• velocity factor:
• density factor:
• flow factor:

■ One parameter per detector per movement:
• length:

■ Two parameters per phase:
• initial green:
• green extension as a fraction of initial green:

⇒An a priori choice of parameters is difficult.  Therefore, we
design experiments to explore the parameter space.
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Intersection for Experiments

■ Twelve turning movements
• four left
• four through
• four right

■ Demand represented by
vehicle headways for twelve
movements: S = (S1, …, S12)

■ Nine control parameters: P =
(β, ρ0, q0, G1, G2, G3, G4, γ, l)

■ Response represented by
vehicle throughput for twelve
movements: C = (C1, …, C12)

■ Four phases
• two through
• two left
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■ explore the relationship
between demand, signal
parameters, and throughput:

C=C(S,P)
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Signal Response Experiment (continued)
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Parameter Optimization Experiment

■ consider nine demand vectors S representative of a variety of
traffic conditions

■ determine the pretimed signalization for each demand from the
Traffic Control Handbook and the Highway Capacity Manual

■ use Latin Hypercube and Fractional Factorial experimental
designs to search the parameter space P of the actuated signal
algorithm

■ compare performance C of the actuated signals versus the
standard pretimed signals
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Vehicle Headway Patterns for Parameter Optimization
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Results of Parameter Optimization Experiment

■ Simulated approximately 10,000 hours of traffic (required two
days of computing).

■ Optimal parameter set for actuated signal algorithm:

• β = 1.0 meters per second

• ρ0 = 0 per meter

• q0 = 0.1 per second

• GT = 20 seconds

• GL = 8 seconds

• γ = 60 %

• l = 37.5 meters

■ This actuated signal outperforms pretimed signals:
• 1st place for seven demand levels: B,C,D,E,F,G,H
• 2nd place for two demand levels: A, I (within 4% of best

pretimed signal)
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Phase Progression for Demand Case “I”
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Signal Response to Randomly-Varied Demand
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Other Possible Performance Measures

■ lane
• flow rate
• occupancy
• speed
• density
• headway
• queue length

■ vehicle
• stops
• seconds stopped
• time delay
• accelerations

■ other
• throughput
• platoon ratio
• progression
• unsatisfied demand
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Applications

■ advantages
• one set of parameters sufficient for a wide variety of traffic

situations
• coordination between signals should emerge naturally
• fast (can simulate ~105 vehicle-seconds per CPU-second on

250 MHz Solaris CPUs)

■ studies
• Portland, Oregon case study

– several thousand signals

• future ITS work
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Prospects

■ Continuing calibration studies:
• refined heuristics for choosing parameters
• optimization methodology
• behavior at a variety of intersection types
• study of larger networks
• natural emergence of coordination over wide areas

■ Automatic generation of controls on networks:
• pattern recognition techniques

■ Enhancing implementation:
• more complex ring structures
• algorithms for specific controllers
• coordination of signals (i.e., wide-area control)
• ITS technologies
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